SUDOSCAN publications

SUDOSCAN main publications by APPLICATION

Last update: May 2021

Over 150 peer-reviewed articles have been published about or mentioning SUDOSCAN! Find the main articles below:

Small fiber neuropathy / SUDOSCAN reliability

V. Fabry et al (A. Pavy-Le Traon). Which Method for Diagnosing Small Fiber Neuropathy?. Front Neurol. 2020; 11: 342. Abstract here

M. G. Porubcin and P. Novak.  Diagnostic Accuracy of Electrochemical Skin Conductance in the Detection of Sudomotor Fiber Loss.  Front. Neurol., vol. 11, p. 273, avr. 2020. Abstract here.

M. Duchesne et al (L. Magy). Assessing sudomotor impairment in patients with peripheral neuropathy: Comparison between electrochemical skin conductance and skin biopsy. Clin Neurophysiol. 2018 Jul;129(7):1341-1348. Abstract here.

A. Vinik et al. Normative Values for Electrochemical Skin Conductances and Impact of Ethnicity on Quantitative Assessment of Sudomotor Function. Diabetes Technol Ther. 2016 Jun;18(6):391-8. Abstract here.

L. Leclair-Visonneau et al (Y. Péréon). Electrochemical skin conductance for quantitative assessment of sweat function: Normative values in children. Clinical Neurophysiology Practice 1 (2016) 43–45. Abstract here.

L. Bordier et al (B. Bauduceau). Accuracy of a Rapid and Non-Invasive Method for the Assessment of Small Fiber Neuropathy Based on Measurement of Electrochemical Skin Conductances. Front Endocrinol (Lausanne). 2016 Feb 29;7:18. Abstract here.

P. Novak. Electrochemical Skin Conductance Correlates with Skin Nerve Fiber Density. Frontiers in Aging Neuroscience. 2016;8. Abstract here.

J.P Lefaucheur et al. Diagnosis of small fiber neuropathy: A comparative study of five neurophysiological tests. Neurophysiol Clin. 2015 Dec;45(6):445-55. Abstract here.

A. Vinik, M.L Nevoret, C. Casellini. The New Age of Sudomotor Function Testing: A Sensitive and Specific Biomarker for Diagnosis, Estimation of Severity, Monitoring Progression, and Regression in Response to Intervention. Front Endocrinol (Lausanne). 2015 Jun 11;6:94. Abstract here.

A.G Smith et al. The diagnostic utility of Sudoscan for distal symmetric peripheral neuropathy. Journal of diabetes and its complications vol. 28,4 (2014): 511-6. Abstract here.

C.H Gibbons et al. Capsaicin induces degeneration of cutaneous autonomic nerve fibers. Ann Neurol. 2010;68:888-898. Abstract here. 

Neurological diseases ​


M. Kharoubi et al (T. Damy). Prevalence and prognostic value of autonomic neuropathy assessed by Sudoscan in transthyretin wild-type cardiac amyloidosis. ESC Heart Fail. 2021 Apr;8(2):1656-1665. Abstract here.

A. Montcuquet et al (L. Magy). Electrochemical skin conductance values suggest frequent subclinical autonomic involvement in patients with AL amyloidosis. Amyloid, vol. 27, no 3, p. 215‑216, juill. 2020.  Abstract here.

E. Fortanier, E. Delmont, A. Verschueren, et S. Attarian. Quantitative sudomotor test helps differentiate transthyretin familial amyloid polyneuropathy from chronic inflammatory demyelinating polyneuropathy. Clin. Neurophysiol., vol. 131, no 5, p. 1129‑1133, mai 2020. Abstract here.

I. Conceição et al. Early diagnosis of ATTR amyloidosis through targeted follow-up of identified carriers of TTR gene mutations. Amyloid. 2019 Feb 22;1–7. Abstract here.

J.P. Lefaucheur et al. The value of electrochemical skin conductance measurement using Sudoscan in the assessment of patients with familial amyloid polyneuropathy. Clin Neurophysiol. 2018 Aug;129(8):1565-1569. Abstract here.

J. Castro et al. Electrochemical skin conductance in hereditary amyloidosis related to transthyretin V30M – a promising tool to assess treatment efficacy?. Amyloid 2018, 25:4, 267-268. Abstract here.

L. Obici et al from the European Network for TTR-FAP (ATTReuNET). Recommendations for presymptomatic genetic testing and management of individuals at risk for hereditary transthyretin amyloidosis. Curr Opin Neurol. 2016 Feb;29 Suppl 1:S27-35. Abstract here.

J. Castro et al. The diagnostic accuracy of Sudoscan in transthyretin familial amyloid polyneuropathy. Clin Neurophysiol. 2016 May;127(5):2222-7. Abstract here.

A. Rousseau et al (D. Adams). Potential Role of In Vivo Confocal Microscopy for Imaging Corneal Nerves in Transthyretin Familial Amyloid Polyneuropathy. JAMA Ophthalmol. 2016 Sep 1;134(9):983-9. Abstract here.

Infectious diseases

A. Hinduja, A. Moutairou, JH. Calvet. Sudomotor dysfunction in patients recovered from COVID-19 .Neurophysiol Clin. 2021 Mar;51(2):193-196. Abstract here.

ES. Tharwa et al. Sudomotor Changes in Hepatitis C Virus Infection with or without Diabetes Mellitus: A Pilot Study in Egyptian Patients. Am J Trop Med Hyg. 2020 Nov 23;104(2):580-4. Abstract here.


F. Izzi et al. Autonomic functions in focal epilepsy: A comparison between lacosamide and carbamazepine monotherapy , J. Neurol. Sci., vol. 418, p. 117095, nov. 2020. 2016 Feb 2;12:135-8. Abstract here.

Fabry disease

P. Sahuc et al. Sudoscan as a noninvasive tool to assess sudomotor dysfunction in patients with Fabry disease: results from a case–control study. Ther Clin Risk Manag. 2016 Feb 2;12:135-8. Abstract here.


G. Pickering et al. Electrochemical skin conductance and Quantitative Sensory Testing on Fibromyalgia. Pain Pract., vol. 20, no 4, p. 348‑356, avr. 2020. Abstract here.

Lewy body disease

Del Pino et al. Autonomic dysfunction is associated with neuropsychological impairment in Lewy body disease. J. Neurol., vol. 267, no 7, p. 1941‑1951, juill. 2020. Abstract here.


A. Silvani. Autonomic nervous system dysfunction in narcolepsy type 1: time to move forward to the next level?.  Clin Auton Res. 2020 Dec;30(6):501-502.  Abstract here.

C. Rocchi et al. Autonomic symptoms, cardiovascular and sudomotor evaluation in de novo type 1 narcolepsy. Clin. Auton. Res., août 2020. Abstract here.

Parkinson’s disease

C. Popescu. Is sudoscan a reliable tool in detecting small fiber neuropathy in Parkinson’s disease patients?. Neurodegener. Dis. Manag., vol. 10, no 2, p. 81‑93, avr. 2020. Abstract here.

X. Xu et al (W. Qiu). Clinical utility of SUDOSCAN in predicting autonomic neuropathy in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2019 Jul;64:60-65. Abstract here.

A. Pavy-LeTraon et al. Combined cardiovascular and sweating autonomic testing to differentiate multiple system atrophy from Parkinson’s disease. Neurophysiol Clin. 2018 Apr;48(2):103-110. Abstract here.

A. Al-Qassabi et al (R.B Postuma). Autonomic Sweat Responses in REM Sleep Behavior Disorder and Parkinsonism. J Parkinsons Dis. 2018;8(3):463-468. Abstract here.

Sjörgen’s syndrome

S. Ng Wing Tin et al (J.P Lefaucher). Characterization of Neuropathic Pain in Primary Sjögren’s Syndrome with Respect to Neurophysiological Evidence of Small-Fiber Neuropathy. Pain Med. 2019 May 1;20(5):979-987. Abstract here.

H.G Zouari et al (J.P Lefaucher). The Clinical Features of Painful Small-Fiber Neuropathy Suggesting an Origin Linked to Primary Sjögren’s Syndrome. Pain Pract. 2019 Apr;19(4):426-434. Abstract here.

Intellectual disability

CC. Zwack et al. Does autonomic nervous system dysfunction influence cardiovascular disease risk in young adults with intellectual disability?. Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H891-H900. Abstract here.

Pure autonomic failure

BS. Gagaouzova et al. Can novel non-invasive autonomic tests help discriminate between pure autonomic failure and multiple system atrophy?. Auton Neurosci. 2021 Mar;231. Abstract here.

Autoimmune small fiber neuropathy

JA. Trevino, P. Novak. TS-HDS and FGFR3 antibodies in small fiber neuropathy and Dysautonomia. Muscle Nerve. 2021 Apr 1. Abstract here.


G. Ponirakis et al. Painful diabetic neuropathy is associated with increased nerve regeneration in patients with type 2 diabetes undergoing intensive glycemic control. Diabetes Investig. 2021 Mar 13. Abstract here.

YR. Lai et al. Feasibility of combining heart rate variability and electrochemical skin conductance as screening and severity evaluation of cardiovascular autonomic neuropathy in type 2 diabetes. J Diabetes Investig. 2021 Jan 31. Abstract here.

AM. Wegeberg et al. Cardiac vagal tone as a novel screening tool to recognize asymptomatic cardiovascular autonomic neuropathy: Aspects of utility in type 1 diabetes. Diabetes Res Clin Pract. 2020 Dec;170:108517. Abstract here.

II. Hussein, SHA. Alshammary, MSM. Al-Nimer . Assessment of sudomotor function in hypertensive with/without type-2 diabetes patients using SUDOSCAN: An electrophysiological study. Clin Neurophysiol Pract. 2020 Dec 13;6:22-28. Abstract here.

DLC. Veloso, RCG. Nascimento, EB. Leite, L. de Avila Santana, AA. Amato. Predictors of sudomotor dysfunction in patients with type 1 diabetes without clinical evidence of peripheral neuropathy. Diabetes Res Clin Pract. 2020 Dec;170:108500. Abstract here.

QY. Guo et al. Continuous glucose monitoring defined time-in-range is associated with sudomotor dysfunction in type 2 diabetes. World J Diabetes. 2020 Nov 15;11(11):489-500. Abstract here.

A. Syngle, S. Chahal, et K. Vohra.  Efficacy and tolerability of DPP4 inhibitor, teneligliptin, on autonomic and peripheral neuropathy in type 2 diabetes: an open label, pilot study. Neurol. Sci., août 2020. Abstract here.

D’amato et al (V. Spallone)The diagnostic usefulness of the combined COMPASS 31 questionnaire and electrochemical skin conductance for diabetic cardiovascular autonomic neuropathy and diabetic polyneuropathy. J Peripher Nerv Syst. 2020 Mar;25(1):44-53. Abstract here

Gatev et al. The role of Sudoscan feet asymmetry in the diabetic foot. Prim. Care Diabetes, vol. 14, no 1, p. 47‑52, févr. 2020. Abstract here

Selvarajah et al (S. Tesfaye). Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. The Lancet Diab & Endoc, Volume 7, Issue 12, December 2019, 938-948. Abstract here.

Carbajal-Ramírez et al. Early identification of peripheral neuropathy based on sudomotor dysfunction in Mexican patients with type 2 diabetes. BMC Neurol. 2019 May 31;19(1):109. Abstract here.

Camoin et al(V. Rigalleau). Comment on Pongrac Barlovic et al. The Association of Severe Diabetic Retinopathy With Cardiovascular Outcomes in Long-standing Type 1 Diabetes: A Longitudinal Follow-up. Diabetes Care 2018;41:2487-2494. Diabetes Care. 2019 Mar;42(3):e4. Abstract here.

Travert et al. Lesions of the small fibers of the autonomic nervous system and gradation of the diabetic foot risk in patients with diabetes. Poster, EASD 2019. Poster here.

Binns‐Hall et al(S. Tesfaye). One‐stop microvascular screening service: an effective model for the early detection of diabetic peripheral neuropathy and the high‐risk foot. Diabet Med. 2018 Jul; 35(7): 887–894. Abstract here.

Jin et al. The Application of SUDOSCAN for Screening Diabetic Peripheral Neuropathy in Chinese Population. Exp Clin Endocrinol Diabetes. 2018 Sep;126(8):472-477. Abstract here.

Poupon et al(V. Rigalleau). Sudomotor function in diabetic peripheral artery disease: a role for diabetic neuropathy?. Neurol Sci. 2018 Jan;39(1):191-192. Abstract here.

B.C Callaghan et al. Better diagnostic accuracy of neuropathy in obesity: A new challenge for neurologists. Clin Neurophysiol. 2018 Mar;129(3):654-66. Abstract here.

Goel et al. Comparison of electrochemical skin conductance and vibration perception threshold measurement in the detection of early diabetic neuropathy. PLoS One. 2017 Sep 7;12(9):e0183973. Abstract here.

Sheshah et al. Electrochemical skin conductance to detect sudomotor dysfunction, peripheral neuropathy and the risk of foot ulceration among Saudi patients with diabetes mellitus. J Diabetes Metab Disord. 2016; 15: 29. Abstract here.

Vinik. Diabetic Sensory and Motor Neuropathy. New England Journal of Medicine. 2016 Apr 14;374(15):1455–64. Abstract here.

Selvarajah et al(S. Tesfaye). SUDOSCAN: A Simple, Rapid, and Objective Method with Potential for Screening for Diabetic Peripheral Neuropathy. PLoS One. 2015 Oct 12;10(10):e0138224. Abstract here.

A.G Smith et al. The Diagnostic Utility of Sudoscan for Distal Symmetric Peripheral Neuropathy. J Diabetes Complications. 2014 Jul-Aug; 28(4): 511–516. Abstract here.

C.M Casellini et al (A.I Vinik). SUDOSCAN, a non-invasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes technology and therapeutics. 2013;15(11). Abstract here.

C.S Yajnik et al (J.P Deslypere). Quick and Simple Evaluation of Sudomotor Function for Screening of Diabetic Neuropathy. ISRN Endocrinol. 2012; 2012: 103714. Abstract here. 


J.B Delmotte et al. Electrochemical Skin Conductance as a Marker of Painful Oxaliplatin-Induced Peripheral Neuropathy. Neurol Res Int. 2018; 2018: 1254602. Abstract here.

M. Saad et al (D. Ricard). Quick, non-invasive and quantitative assessment of small fiber neuropathy in patients receiving chemotherapy. Journal of Neuro-Oncology. 2016;127(2):373-380. Abstract here. 

over time

T. Didangelos et al. Vitamin B12 Supplementation in Diabetic Neuropathy: A 1-Year, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2021 Jan 27;13(2):395. Abstract here.

C.S. Yajnik et al. A physiological dose of oral vitamin B-12 improves hematological, biochemical-metabolic indices and peripheral nerve function in B-12 deficient Indian adolescent women. PLoS One. 2019;14(10):e0223000. Published 2019 Oct 10. Abstract here.

A.P. Trouvin and S. Perrot. Functional and histological improvements of small nerve neuropathy after high-concentration capsaicin patch application: A case study. Pain Rep. 2019;4(4):e761. Abstract here.

C.M. Casellini et al (A. Vinik). Bariatric Surgery Restores Cardiac and Sudomotor Autonomic C-Fiber Dysfunction towards Normal in Obese Subjects with Type 2 Diabetes. PLoS One. 2016 May 3;11(5):e0154211. Abstract here.

A. Raisanen et al (J. Tuomilehto). Sudomotor Function as a Tool for Cardiorespiratory Fitness Level Evaluation: Comparison with Maximal Exercise Capacity. Int J Environ Res Public Health. 2014 May 30;11(6):5839-48. Abstract here.  

To receive our latest scientific news:

Website dedicated
to health professionals

I am a health professional

Scroll to Top